

Creation and Maintenance of Transgenic Insects:
From practical point of view

Transgenic Insects:

Micro-manipulation and Micro-injection of Disease Vectors

Rockville, MD 20850-3467 USA

Transposable Elements for Insect Transformation $^{\Leftrightarrow}$

AM Handler, United States Department of Agriculture, Gainesville, FL, United States DA O'Brochta, University of Maryland, College Park, MD, United States

© 2017 Elsevier Inc. All rights reserved.

- 1. Introduction
- 2. P Element Transformation
- 3. Excision and Transposition Assays for Vector Mobility
- 4. Transformation Marker System
- 5. Transposon Vectors
- 6. Transformation Methodology

Embryo Preparation

Needles

DNA Preparation and Injection

DNA injection

Post-Injection Treatment

Improvements for Transformation Methodology

7. Summary

Acknowledgements

References

Relevant Websites

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

17-11-27

Insect Transformation Facility (ITF)

Core Facility - a discrete unit within an institution -dedicated personnel – equipment - space for operations.

recover cost providing service in the form of user fees that are charged to an investigator's funds, often to NIH or other federal grants.

The ITF mission is to be an international resource for the creation of genetically modified insects, a developer of new insect genetic modification technologies, and a source of training in the use of these technologies.

Client Research Focus

- · Host Pathogen Interactions (Malaria, Zika, and Dengue)
- Mosquito Olfaction
- · Sterile Insect Technology
- EVO-DEVO
- · Transposon Research
- Improvement of Beneficial Insects
- Gene Drive
- Food Security
- Malaria Vaccine Development (Sanaria Inc)

ITF Staff have experience working with 41 arthropod species:

Hermobia domestica, Lucilia sericata, Lucilia cuprina, Apis mellifera, Nezara viridula, Spodoptera frugiperda, Helicoverpa zea, Heliothis virescens, Cydia pomonella, Ixodes scapularis, Musca domestica, Macrosteles fascifrons, Toxotrypana curvicauda, Megaselia abdita, Borbotillus frigipennis, Culex pipiens, Culex tarsalis, Teleopsis dalmanni. Bemisia tabaci, Culex tarsalis, Cerapachys biroi, Lutzomyia longipennis, Nasonia vitripennis, Polistes carolina, Wasps sp (?), Vanessa sp.

- · Clients in 8 countries
- Projects or submitted grants with 6 companies
- 28 Universities, Colleges, and Research Institutes
- 3 US government entities;
- 16 client publications since 2011.

Transposable Elements for Insect Transformation[☆]

AM Handler, United States Department of Agriculture, Gainesville, FL, United States DA O'Brochta, University of Maryland, College Park, MD, United States

© 2017 Elsevier Inc. All rights reserved.

- 1. Introduction
- 2. P Element Transformation
- 3. Excision and Transposition Assays for Vector Mobility
- 4. Transformation Marker System
- 5. Transposon Vectors
- 6. Transformation Methodology

Embryo Preparation

Needles

DNA Preparation and Injection

DNA injection

Post-Injection Treatment

Improvements for Transformation Methodology

7. Summary

Acknowledgements

References

Relevant Websites

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Manufacturing Quartz Capillary Needles by Sutter P2000 Laser Puller

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Use 7.5 cm long 1.0 mm OD & 0.7 mm ID Capillary

Can make two needles with one Capillary

Needles are fused at the tip

Genetic materials are placed in the needle using a small glass Micro-pipette

Once the needle is mounted on the micro-manipulator it needs to be open physically

19

Changing parameters for heat, filament scanning, velocity, delay in applying pull force we can design needles appropriate for varying egg chorion

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Typical Micro-injection Setup

Needle and needle holder are attached to micro-injection apparatus (not shown)

Above is attached to X,Y,Z micro-Manipulator on a metal stem

Micro-manipulated eggs are on glass cover slide

Injections are performed by moving the into each egg for injections

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

21

Creating Insect Genetic Modifications

Aedes aegypti Microinjection posterior

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Anopheles stephensi egg injections ventral

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

23

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Transformation of Drosophila

Mosquitoes Cross Ratio ? ? 1:7

Typical Project Micro-inject = 500 eggs G0 = 20 % hatch = 100 Crosses= 10 \circlearrowleft & 5 \circlearrowleft G1 = 52,500 + 7,500

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

25

Screening G₁

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Genome Modification Transposons

- Limitations
 - 1. Insertion is basically random
 - 2. Subject to position effects

- 3. Need promotors that work within the insect of interest in order for the system to work
- 4. Do not work equally in all insects
- 5. Can be remobilized

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

21

Gene Silencing with CRISPR

Gene Insertion with CRISPR

To insert a gene, the new gene is added into the original CRISPR plasmid. It is designed to line up perfectly with the cut DNA strands, so the cell uses a different technique, homology directed repair, to incorporate a new stretch of DNA into the genome.

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Thank you!

Insect Transformation Facility Team

Professor David O'Brochta Rob Harrell – Manager Yonas Gebremicale Robert Alford Valeria Saffer

IGTRCN Workshop Participants July 2017

INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH