Course plan ZOL412ME2

Course title	Advanced Evolutionary Biology and Molecular Systematics
Course code	ZOL 412 ME2
Credit value	2 (22 hours Lectures & 23 hours P)
objectives	This course aims to: Outline and explain the concepts in evolutionary biology; evolutionary process, mechanisms and types;
Intended Learning	Upon the completion of this course, the student should be able to;
Outcome	 Construct ideas about the process of evolution Interpret the theories in detail and discriminate them Distinguish bio molecules as tools for taxonomy Investigate different techniques and models to evaluate the evolution of different groups of organisms
Course content	Mechanism of most accepted and plausible evolutionary theories. Processes other than natural selection. Developing phylogenetic trees using morphological and molecular data- parsimony, maximum likelihood, Neighbour joining and Bayesian approaches. Recent advances in molecular taxonomy and its use in biological systems.
Teaching and learning methods	Lecture presentation, tutorial discussion, field based studies, laboratory based experiments, take-home assignments, problem based student presentations
Course plan Theory	 L1-11- Introducing and recalling the evolutionary principles and theories. Discussion on different papers describing discrepancies in those theories with special focusing on natural selection- Group discussion on given papers and articles; Student presentations describing the papers; each student will have a session to describe their findings and critique with questions and feedback (ICA1) L12-15- Morphology based taxonomy; introducing the creation of phylogeny and cladogram using morphometry- Lectures and hands onw rok in computer L16 – Assignment – Students will prepare a cladogram for a given set of data – ICA 2 L17-20- Introducing molecular taxonomy and uses – lectures
	L21-22- tutorial Session 1-3- Students will be asked to visit the University premises to identify a group of flora/ fauna to describe their relationship based on their observation. They will work individually and then their work will be
	presented and the feedback will be given – ICA1

	Session4 and 5- Molecular based data will be processed and the deduction
	of phylogeny based on different models will be discussed – hands on <i>in</i> -
	silico work and discussion
	Session6 – recalling
	Session 7- ECE exam
Evaluation Methods	Theory: In-Course Assessments (30%)
	End of Course Examination (70%)
	Practical: In-Course Assessments (30%)
	End of Course Examination (70%)
	Marks obtained in theory component (MT) and practical component
	(MP) will be computed into Overall Marks as (6MT+4MP)/10
Exam blue print	The ECE (Theory) will have four questions from any of the following
	sections;
	• Criticising different theories describing evolution based on given
	example
	Natural selection and the principles
	 Taxonomy- Molecular and morphology based
	Practical ECE will be with 4-5 questions with different mark weightage
	covering all the sessions with questions may include identification, spotting,
	comment and critique.
References	• Gajapathy,K. (2015).Beginners Guide to Sandfly Taxonomy.
	Lambert Academy press, Germany.
	• Darwin's Ghost (2000); the origin of species updated. Steve
	Jones. Ballantine Publishing Group. New York
	• Gajapathy et al. (2016) Use of Bioinformatics in Revealing the
	Identity of Nature's Products with Minimum Genetic Variation:
	The Sibling Species. In (edited by Sumiko Anno): Gene
	environment Interaction Analysis; methods in Bio Informatics
	and Computational Biology. Pan Stanford press. Singapore.
Resource person	Dr. K. Gajapathy

Sgd

Gajapathy K